
1. Introduction
Frozen soil consists of permafrost and seasonally frozen ground (Cuo et al., 2015). Seasonally frozen ground 
refers to areas where soil is frozen for 15 days or more per year (Y. Zhang et al., 2003), whereas permafrost is 
defined as the ground that remains below subfreezing temperatures for two or more consecutive years. Perma-
frost and seasonally frozen ground account for about 58% (or 55 million km 2) of the land surface in the Northern 
Hemisphere (NSIDC, 2022; T. Zhang et al., 1999), exerting tremendous impacts on water infiltration; ecosystem 
biogeochemical processes; greenhouse gas emissions; and freshwater, carbon, and nutrient inputs into the Arctic 
oceans. The presence of ice in soil reduces soil permeability while increasing thermal conductivity, which affects 
partitioning of snowmelt water into infiltration and surface runoff. At least eight out of the 32 most significant 

Abstract Despite plentiful evidence of frozen ground effects on snowmelt infiltration from lab experiments 
at pedon scales, streamflow observations show a weaker or no effect in terms of timing and magnitude at larger 
scales. We aim to understand this conflicting phenomenon through modeling using the Noah land surface 
model with multi-physics (MP; Noah-MP) options and the Routing Application for Parallel computatIon 
of Discharge (RAPID) over the Mississippi River Basin. We conduct 16 experiments with combinations of 
two supercooled liquid water (SLW) parameterization schemes and four soil hydraulic property schemes in 
Noah-MP driven by two gridded precipitation products of the North American Land Data Assimilation System 
(NLDAS) and the Integrated Multi-satellitE Retrievals for GPM (IMERG) Final. We then use RAPID to route 
Noah-MP modeled surface runoff and groundwater discharge to predict daily streamflow at 52 United States 
Geological Survey gauges from 2015 to 2019. A model with the highest permeability performs better than 
other schemes on daily streamflow predictions by 20%–57% throughout a water year and 29%–113% for the 
spring as measured by the mean Kling-Gupta Efficiency of the 52 gauges. Different SLW schemes demonstrate 
negligible effects on streamflow predictions. Models forced by IMERG show a better prediction skill compared 
with those forced by NLDAS at most of the gauges. Both precipitation products confirm that a scheme of 
higher permeability yields more accurate streamflow predictions over frozen ground. Future models should 
represent preferential flows through macropore networks to improve the understanding of frozen soil effects on 
infiltration and discharge across scales.

Plain Language Summary Frozen ground presumably affects the discharge of snowmelt water 
into rivers during winter and spring due to the apparent effects of ice “blockage.” The presence of ice in the 
soil affects the release of soil liquid water and the time to release the water to local streams and rivers through 
the effects of soil ice on water flow and capacity to hold snowmelt water. At present, it is not fully understood 
how the soil ice affects the soil's capability of holding and releasing liquid water to rivers at river-basin to 
continental scales. We use a computer model to test competing hypotheses through combinations of optional 
schemes of water holding capacity and water flow. The modeling results over major sub-basins in the 
Mississippi River show that a model with higher permeable frozen soil results in higher skill in streamflow 
predictions at river basin scales. This study highlights the need to represent water flow through macropores that 
may be formed due to ice expansion during freezing/thawing cycles.
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floods in the 20th century in the United States were related to snowmelt runoff over frozen ground (Berghuijs 
et al., 2016; Gray et al., 2001; Ivancic & Shaw, 2015; Neri et al., 2019; Perry, 2000; Pradhanang et al., 2013; C. 
Tang et al., 2012). In addition, snowmelt runoff accounts for three-quarters of annual streamflow in the western 
US, providing a major water source (Knowles et al., 2006; J. Li et al., 2017). Given the considerable impact of soil 
freeze-thaw effects on infiltration and runoff, a better understanding of these processes is vital for flood predic-
tion and water resources management as well as for modeling other earth system processes.

At lab scales, the presence of ice in the soil matrix largely reduces soil permeability and substantially modi-
fies water retention characteristics, which represent the relationship between moisture content and suction 
(Black & Tice,  1989; Gharedaghloo et  al.,  2020; Kurylyk & Watanabe,  2013; Mohammed et  al.,  2019; Ren 
& Vanapalli, 2019). However, many studies have indicated that, at the field scale, the effects of frozen soil on 
infiltration and runoff are dependent on scale as well as overlying vegetation and snow conditions (Ala-Aho 
et al., 2021; Bayard et al., 2005; Flanagan et al., 2020; Lindström et al., 2002; Lundberg et al., 2016; Shanley 
& Chalmers, 1999; Stadler et al., 1996). Shanley and Chalmers (1999) found no clear effects of frozen soil on 
the runoff ratio in the Sleepers River watershed, Vermont, with an area of 111 km 2. While they did observe a 
relationship in a 0.59  km 2 agricultural sub-catchment (without vegetation sheltering effects), the data record 
was insufficient for statistical analysis. The effects of frozen soil on the timing and magnitude of runoff were 
demonstrated to be very weak from an analysis of 16 years of data from a 0.5 km 2 forested watershed in north-
ern Sweden (Lindström et al., 2002). More field studies using dye tracer techniques (Flury et al., 1994; Stadler 
et al., 2000; Stähli et al., 2004) revealed that water can infiltrate into deeper soils through preferential pathways 
depending on pre-freezing water content. The changes in infiltration caused by preferential flow in frozen soil 
may govern the snowmelt partitioning between surface runoff and infiltration (Larsbo et al., 2019; Lundberg 
et  al.,  2016; Mohammed et  al.,  2021). Air-filled macropore networks allow preferential flow under partially 
saturated conditions due to substantial increases in infiltration capacity. However, refreezing of infiltrated water 
can block the preferential pathway (Demand et al., 2019; Larsbo et al., 2019; Mohammed et al., 2019; Stähli 
et al., 2004; Watanabe & Kugisaki, 2017). The effects of frozen soil on snowmelt infiltration/percolation, surface 
runoff, groundwater recharge/discharge, and hence streamflow remains “controversial and contradictory” and 
most likely dependent on site, scale, and overlying snow and vegetation conditions as reviewed by Ala-Aho 
et al. (2021).

Frozen soil models represent soil freeze-thaw processes through coupled heat and flow equations (Richards' 
equation) as well as the generalized Clapeyron equation for liquid water retention (Flerchinger & Saxton, 1989; 
Hansson et al., 2004; Koren et al., 1999; Mohammed et al., 2019; Niu & Yang, 2006; Zhao & Gray, 1997). Land 
surface models (LSMs) for use in weather and climate models started to explicitly represent soil water phase 
change during 1990s (e.g., Cherkauer & Lettenmaier, 1999; Koren et al., 1999; Pitman et al., 1999) due to its 
importance to buffering seasonal temperature variations (e.g., Poutou et al., 2004), biogeochemical processes, and 
greenhouse gas release. Most of the representations are simplified from more complex models (e.g., Flerchinger 
& Saxton, 1989; Jordan & Beare, 1991; C. Wang & Yang, 2018; Yu et al., 2018; Zhao & Gray, 1997) by neglect-
ing water vapor and its effects on heat and water flows as reviewed by Q. Li et al. (2010). However, these explicit 
frozen soil schemes degraded runoff simulation in the boreal regions, and thus the effects of soil ice on infiltration 
and runoff are suggested not being included in LSMs until more data are available (Pitman et al., 1999).

Early models treated the freezing-thawing processes as drying-wetting processes when parameterizing frozen 
soil hydraulic properties (SHPs), resulting in extremely low permeability and strong matrix suction in the topsoil 
(and thus upward flow) during freezing (Cox et al., 1999; Flerchinger & Saxton, 1989; Hansson et al., 2004). 
Lab experiments and plot-scale field experiments support this assumption (Burt & Williams, 1976; Hansson 
et al., 2004). These models parameterized hydraulic conductivity and matric potential as a function of liquid 
water content only. Later LSMs and macroscale hydrological models assumed that early spring snowmelt can 
infiltrate into frozen soil through preferential pathways or lateral overland flows to locally permeable areas 
(Granger et al., 1984; Jarvis et al., 2016; Mohammed et al., 2021; Niu & Yang, 2006; Stadler et al., 2000; Stähli 
et al., 1996). For example, Variable Infiltration Capacity (VIC) introduced a scheme based on subgrid spatial 
distribution of soil temperature to enhance infiltration, thereby improving spring peak flow predictions (Cherkauer 
et al., 2003). Niu and Yang (2006) developed a scheme of SHP based on the two-domain modeling of Stähli 
et al. (1996) to enhance infiltration. In a contrasting approach, the NCAR Community Land Model (CLM4.5; and 
later versions) reduced the permeability by applying an ice impedance factor in hydraulic conductivity. While the 
use of the impedance factor reduces biases in spring peak flow simulations for two large river basins, it degrades 

Writing – original draft: Jetal Agnihotri
Writing – review & editing: Ali 
Behrangi, Ahmad Tavakoly, Matthew 
Geheran, Mohammad A. Farmani, 
Guo-Yue Niu



Water Resources Research

AGNIHOTRI ET AL.

10.1029/2022WR033075

3 of 25

predictions for other watersheds (Swenson et al., 2012). A recent review of field evidence, laboratory studies and 
physics-based models accounting for freeze-thaw processes (e.g., Larsbo et al., 2019; Mohammed et al., 2021) 
suggested that macropore flow through preferential pathways (Beven & Germann, 2013; Jarvis et al., 2017) is 
crucial to predicting infiltration. Despite decades of efforts on lab and field experiments and advanced physically 
based modeling, there are still knowledge gaps associated with hydrological responses to seasonal frozen ground 
at basin scales (Ala-Aho et al., 2021).

In this study, we investigate the impacts of soil freeze-thaw parameterizations on streamflow simulations at a large 
spatial scale and at a high temporal resolution. Specifically, we examine the effects of various frozen soil schemes 
in the Noah LSM with multi-physics options (Noah-MP) (Niu et al., 2011) on daily simulated discharge at 52 
United States Geological Survey (USGS) gauges in the Mississippi River Basin (MRB) using the Routing Appli-
cation for Parallel omputation of Discharge (RAPID; David et al., 2011) river routing model. Yuan et al. (2018) 
demonstrate good agreement between streamflow simulations using the Integrated Multi-satellitE Retrievals for 
GPM (IMERG) Final precipitation and observed data. To address the impacts of uncertainties in climatic forc-
ing on frozen soil effects, we drive Noah-MP with IMERG-Final precipitation and North American Land Data 
Assimilation System Phase-2 (NLDAS-2) precipitation. While Niu and Yang (2006) tested the impacts of frozen 
soil SHP schemes on runoff simulations at a monthly resolution without river routing, this study investigates the 
impact of Noah-MP frozen-soil schemes on streamflow predictions using the RAPID river routing model at a 
daily scale between 2014 and 2019 for ∼1.2 million river reaches over the MRB. This will significantly improve 
our understanding of the effects of frozen soil at a more application-relevant scale.

2. Materials and Methods
2.1. Study Area

The MRB, covering approximately 41% of the continental United States (CONUS; 3.28 million km 2), comprises 
six major USGS two-digit hydrologic unit code (HUC-2) (http://water.usgs.gov/GIS/huc.html) basins. These 
basins, labeled as H05, H06, H07, H08, H10, and H11 (Figure 1), drain to the Ohio, Tennessee, Upper Missis-
sippi, Lower Mississippi, Missouri, and Arkansas-White-Red Rivers, respectively. The regions are delineated by 

Figure 1. The Mississippi River Basin with 52 United States Geological Survey gauges used in this study. Four gauges 
(red dots), representing major basins, are selected for further analysis. NHDPlus flowlines are river reaches with Strahler 
Order higher than three for clarity. The six HUC-2 river basins are the Ohio and Tennessee Rivers (H05 and H06), the Upper 
Mississippi River (H07), the Lower Mississippi river (H08), the Missouri River (H10), and the Arkansas-White-Red region 
(H11).

http://water.usgs.gov/GIS/huc.html
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the NHDPlus version 2 geospatial data set (Horizon Systems Corporation, 2007), which is an integration of the 
National Hydrography Data set's (NHD) 1:100,000-scale stream network, 1-arc s National Elevation Data set 
and the Watershed Boundary Data set. The NHDPlus data set includes approximately 2.7 million vector-based 
reaches, each of which is associated with a catchment polygon. The NHDPlus version 2 data set, includes 
NHDPlus catchments, NHDPlus flowlines, and NHDPlus attributes that were used to create a river connectivity 
file and to calculate flowline slopes. A single data set containing river network and catchment shapefiles for 
all regions within the MRB (Figure 1) was obtained by merging the flowlines and catchment information from 
NHDPlus attribute data.

2.2. Description of Data Sets and Models

We used two different precipitation data sets and a data set of other atmospheric forcing variables (see Section 2.2.2) 
to drive the Noah-MP LSM with optional frozen soil schemes and conducted 16 model experiments. We then 
transferred surface runoff and groundwater discharge from Noah-MP to RAPID to simulate discharge at the 52 
USGS gauge locations in the MRB. Figure 2 shows a schematic diagram for the workflow used in this study, 
which includes the forcing data, connections between Noah-MP and RAPID river routing model, and modeling 
outputs. The rest of this section describes in detail forcing and observational data, the Noah-MP LSM, frozen 
soil schemes, the RAPID river routing model and the model performance evaluation approach used in this study.

2.2.1. Precipitation Forcing Data

We forced Noah-MP with two precipitation data sets: NLDAS-2 precipitation and IMERG-Final Run (V06B) 
precipitation from 2014 to 2019. The IMERG-Final precipitation data set (Huffman et  al.,  2020) has been 
widely applied (Dezfuli et  al.,  2017; Guo et  al.,  2016; S. Tang et  al.,  2020) in modeling studies (Jiang & 
Bauer-Gottwein,  2019) and shown to often accurately estimate heavy precipitation events (Liu,  2016; Yuan 
et al., 2018; Zhou et al., 2021). IMERG-Final is a Level-3, half-hourly precipitation data set with a spatial resolu-
tion of 0.1° × 0.1° covering 60°S–60°N latitudes. The IMERG algorithm intercalibrates, merges, and interpolates 
observations from all satellite passive microwave sensors and infrared sensors to produce global precipitation 
products (Huffman et  al.,  2020). Regionalization and bias-correction adjustments are applied to the satellite 
estimates using extensive monthly Global Precipitation Climatology Centre gauge precipitation data to obtain 
IMERG-Final product. We generated hourly IMERG-Final precipitation by mapping the IMERG half-hourly 
product from 0.1° to 0.125° (NLDAS-2) resolution using bilinear interpolation.

We also used NLDAS-2 precipitation data (Xia et al., 2012) to drive Noah-MP. This data set features a spatial reso-
lution of 0.125°, an hourly time step, and a period of record from January 1979 to the present over the continental 

Figure 2. Schematic diagram showing the workflow from the atmospheric forcing data to the RAPID-simulated discharge 
at gauge stations. Combining the eight frozen soil schemes and the two precipitation products generates 16 model scenarios, 
from which the resulting modeled surface runoff and groundwater discharge are transferred to RAPID.
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US (CONUS). The precipitation data is a part of the NLDAS-2 forcing data described in the next section. It is 
derived from the unified Climate Prediction Centre daily CONUS gauge data set (M. Chen et al., 2008) with 
Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et al., 1994), orographic adjust-
ments, NCEP hourly Stage II doppler radar precipitation data, half-hourly CMORPH (CPC-MORPHing tech-
nique (Joyce et al., 2004)) data, and 3-hourly NCEP North American Regional Reanalysis (NARR) data. The 
precipitation data set benefits from the relative accuracy of the daily gauge product and the temporal and spatial 
resolution of the Doppler radar and CMORPH data sets.

2.2.2. Other Atmospheric Forcing Data, Vegetation, and Soil Parameters

The IMERG-Final and NLDAS-2 precipitation data sets were each used, along with additional NLDAS-2 atmos-
pheric forcing data, to drive Noah-MP for the 2014–2019 period. The NLDAS-2 data set includes downward 
shortwave and longwave radiation fluxes, surface air pressure, temperature, specific humidity, and wind speed. 
These are derived by spatially interpolating and temporally disaggregating the NARR data assimilation product 
(Mesinger et al., 2006). The NLDAS-2 data set has been widely verified and applied in many modeling studies 
(Ma et al., 2017; Niu et al., 2020; Pascolini-Campbell et al., 2019; Xia et al., 2012). It is available at an hourly 
time step with a spatial resolution of 0.125° over the CONUS domain. We used the global 1-km hybrid State Soil 
Geographic Database and the USGS 24-category vegetation data to determine the soil and vegetation parameters, 
respectively. Both the 1-km data sets are aggregated to 0.125° with the dominant soil and vegetation types to 
match the spatial resolution of the NLDAS-2 forcing data. The soil and vegetation parameters are then deter-
mined for each soil type and vegetation type through the look-up tables of Noah-MP following Niu et al. (2020).

2.2.3. Observational Data for Model Evaluation

To assess the model's predictive capability, we used the observed daily streamflow data to assess RAPID predicted 
streamflow time series for the study period (1 January 2015–31 December 2019). The daily streamflow data 
were downloaded from the US Geological Survey (USGS) National Water Information System (NWIS) website 
(Accessed at http://nwis.waterdata.usgs.gov/nwis/dvstat/?referred_module=sw). Based on data availability, the 
observed daily streamflow data at 52 gauges are used in this study for model validation (Figure 1). These gauges 
represent a wide range of drainage areas, spanning from 178 km 2 (e.g., Bayou De Chien near Clinton, Kentucky) 
to 2.9 million km 2 (e.g., Mississippi River at Vicksburg). The average discharge recorded at these gauges varies 
from a low rate of 1.5 m 3/s to a high rate of 23,735 m 3/s. We selected four gauges to represent the major regions 
for further analysis (red colored dots in Figure 1). The Keokuk, Iowa station represents runoff from the Upper 
MRB; the Hermann, Missouri station represents the Missouri river basin; the Arkansas-White-Red River basin 
is represented by the Springbank, Arkansas station; and the Vicksburg, Mississippi station represents the Lower 
MRB. The drainage area, location, and river basin information for the four selected gauges are summarized in 
Table 1.

We also used the 4-km gridded snow water equivalent (SWE) and snow depth developed at the University of 
Arizona (UA) (Broxton et al., 2016; Dawson et al., 2017; Zeng et al., 2018) to validate the Noah-MP simulated. 
This product was generated by assimilating recorded SWE, snow depth from snow telemetry (SNOTEL), Coop-
erative Observer Network (COOP) stations, and PRISM daily precipitation and temperature data. In addition, we 
used the NASA Soil Moisture Active Passive (SMAP) Level-3 data set (O’Neill et al., 2021) to validate the frozen 
soil days simulated by Noah-MP. SMAP L3 gridded daily estimates of freeze-thaw are available at 36 km spatial 
resolution on a cylindrical EASE grid and are transformed to a rectangular grid and downscaled to the 0.125° 
NLDAS-2 grid for comparison.

Table 1 
Location and Drainage Area of Four Selected Stations (Red Dots in Figure 1) Used for Further Analysis to Represent Major Basins

Station name Longitude Latitude HUC-2 regions NHDPlus region

Drainage area (km 2)

USGS NHDPlus

Mississippi River at Keokuk, Iowa −91.37 40.39 Upper Mississippi Region (H07) 7 308,209 298,719

Missouri River at Hermann, Missouri −91.44 38.71 Missouri Region (H10) 10 1,353,268 1,277,918

Red River at Spring Bank, Arkansas −93.86 33.08 Arkansas-White-Red Region (H11) 11 – 146,785

Mississippi River at Vicksburg −90.91 32.32 Lower Mississipi Region (H08) 8 2,953,881 2,913,317

http://nwis.waterdata.usgs.gov/nwis/dvstat/?referred_module=sw
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2.2.4. Noah-MP Model

We selected Noah-MP (Niu et al., 2011; Yang et al., 2011) in this study due to its wide use in the Weather 
Research and Forecast and the Unified Forecast System for weather and short-term climate predictions and 
the National Water Model (NWM) for streamflow and water resources predictions. It also provides optional 
parameterization schemes of various processes, including frozen soil processes, for testing competing hypothe-
ses. Noah-MP describes the energy and water exchanges between the land ecosystem and the atmosphere using 
one canopy layer, up to three layers (depending on snow depth) for snowpack, four soil layers with a total depth 
of 2 m, and an unconfined aquifer below the soil column. To represent surface heterogeneity, a “semi-tile” 
sub-grid scheme is implemented to separately compute net longwave radiation, latent heat, sensible heat, and 
ground heat fluxes over bare and vegetated soil surfaces. It includes a simple bucket-type groundwater model, 
of which the storage is controlled by the residual of recharge and discharge rates (Niu et al., 2007). The ground-
water recharge is formulated as the Darcy flux driven by capillary and gravity forces, thereby representing 
exchanges of water between the aquifer and the overlying unsaturated soil column. It was designed for use in 
global climate models to extend the land “memory” of antecedent weather events and act as a climate “buffer” 
zone through “negative” recharge during dry seasons and dry years. To facilitate its global use, it does not need 
detailed geological information of deep aquifers but instead uses global soil type data to control the water flows 
in the soil and groundwater recharge. Noah-MP adopts a TOPMODEL-based runoff scheme (Niu et al., 2005) 
to compute surface runoff and groundwater discharge, which are parameterized as an exponential function of 
water-table depth.

Modeling soil ice content and its effects on infiltration and water flow through frozen soils is strongly affected by 
snow simulations due to the critical thermal insulating effects of snowpack. The previous versions of Noah-MP 
usually produced less-than-observed SWE, especially in the western US. For instance, the Noah-MP version in 
the NWM underpredicts SWE compared to SNOTEL measurements due to model representations and atmos-
pheric inputs (Garousi-Nejad & Tarboton, 2022). Therefore, in this study, we updated Noah-MP with our newly 
developed snow/rain partitioning scheme based on wet-bulb temperature (Y. H. Wang et al., 2019) and two-stream 
approximation radiation transfer scheme (W. Wang et al., 2022). Under conditions with <95% in relative humid-
ity (mostly over mountains), the former enhances snowfall and SWE, while the latter generally enhances snow-
melt due to the penetration of solar radiation into snowpack and the resulting internal solar heating. As such, we 
calibrated the holding capacity of liquid water (fraction of snowmelt held by snowpack) to a larger value, 0.08 
(from 0.03), and thus more liquid water held during daytime can be refrozen at night, resulting in a better agree-
ment with the UA SWE and snow depth product.

We conducted Noah-MP model simulations on an hourly timestep and with 0.125° resolution starting with 
spatially constant, relatively wet and warm initial conditions (soil moisture  =  0.3 m 3 m −3 and soil tempera-
ture = 287 K) and ran the model for three loops from 2014 to 2019. The first two loops served as the model 
spin-up processes, and the surface runoff and groundwater discharge from the third loop were transferred to 
RAPID for routing. The basic options of all processes other than frozen soil used for the Noah-MP runs are listed 
in Table 2. We ran all the model scenarios at the spatial resolution of the atmospheric forcing variables, that is, 
0.125° and hourly timestep. We used the model parameters included in Niu et al. (2020), of which the model 
parameters in the dynamic vegetation module were manually calibrated to match the MODIS leaf area index 
data. In this study, we did not calibrate the parameters associated with frozen soil schemes. We ran the model at 
an hourly timestep but evaluate the modeled river discharge at a daily scale, because sub-daily runoff prediction 
skill may more strongly rely on precipitation data accuracy rather than model structures. At present, most global 
and regional precipitation products generally underestimate extreme events, though it is interesting to study the 
frozen soil effects at sub-daily scale for modeling flash floods.

Noah-MP describes the coupled heat transfer and water flow in the frozen soil and explicitly predicts liquid 
water and ice volume by assessing the energy excess or deficit needed to change the soil temperature of a 
layer to the freezing point (Appendix A in Niu and Yang (2006)). Noah-MP solves the mass-based Richards' 
equation for water flow through frozen soils with a flux upper boundary condition, that is, the infiltration rate 
on the surface. The infiltration rate is computed as the residual of water incident on the surface minus surface 
runoff, which is parameterized as the sum of saturation-excess runoff based on the TOPMODEL concept 
(Niu et al., 2005) and infiltration-excess runoff over the impermeable fraction of frozen ground (Equation 6 
in the following section). Presence of ice modifies SHPs and thus the water flow in the soils and groundwater 
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recharge, which is computed as the water exchanges between the bottom soil and the aquifer following the 
Darcy's law (see Niu et al. (2007) for more detail). Here, we describe two options of supercooled soil water 
parameterization schemes, four SHP schemes (two are newly added), and the model scenarios generated from 
their combinations.

2.2.4.1. SLW Schemes

SLW is the liquid water that coexists with ice over a wide range of subfreezing temperatures and can be derived 
from various forms of freezing-point depression equations. Noah-MP provides two options to solve the liquid 
water content. Option 1 (SLW1) uses a general form of freezing point depression equation modified following 
Niu and Yang (2006):

𝜃𝜃liq,max = 𝜃𝜃sat

{

103𝐿𝐿𝑓𝑓 (𝑇𝑇 − 𝑇𝑇f rz)

𝑔𝑔𝑇𝑇𝑔𝑔sat

}−1∕𝑏𝑏

 (1)

where θliq,max [m 3 m −3] is the maximum liquid water when the soil temperature is below the freezing point, θsat [m 3 
m −3] is the porosity, Lf [J kg −1] is the latent heat of fusion, T (K) and Tfrz (K) are the soil temperature and freezing 
point temperatures respectively, ψsat (m) is the air-entry matric potential at saturation, b is the Clapp-Hornberger 
parameter and g (m s −2) is the gravitational acceleration. Only the amount of liquid water beyond θliq,max is 
available for freezing, and the amount of actual liquid water that is frozen is dependent on the freezing rate (Niu 
& Yang, 2006). Option 2 (SLW2) is a variant of freezing point depression equation with an additional term of 

𝐴𝐴 (1 + 8𝜃𝜃ice)
2 following (Koren et al., 1999):

(1 + 8𝜃𝜃ice)
2
𝜓𝜓sat

(

𝜃𝜃liq,max

𝜃𝜃sat

)−𝑏𝑏

=
103𝐿𝐿𝑓𝑓 (𝑇𝑇 − 𝑇𝑇f rz)

𝑔𝑔𝑇𝑇
 (2)

This extra term may produce more liquid water due to enhanced soil surface tension caused by the volume expan-
sion during ice crystal formation. This equation needs to be iteratively solved.

2.2.4.2. SHP Schemes

Noah-MP provides two options for soil hydraulic conductivity and soil hydraulic diffusivity under frozen condi-
tions, and we added two other options in this study. Option 1 (SHP1) separates a model grid cell into two frac-
tional domains: a permeable and an impermeable fraction (Niu & Yang, 2006). Over the impermeable area, the 
infiltration rate is assumed zero, while over the permeable fraction, the hydraulic conductivity (k) and diffusivity 

Table 2 
Noah-MP Options Used in This Study

Process Options Schemes

Dynamic vegetation DVEG = 2 Dynamic vegetation

Canopy stomatal resistance OPT_CRS = 1 Ball-Berry type

Moisture factor for stomatal resistance OPT_BTR = 1 Plant water stress

Runoff and groundwater OPT_RUN = 1 TOPMODEL with groundwater

Surface layer exchange coefficient OPT_SFC = 1 Monin-Obukhov similarity theory (MOST)

Radiation transfer OPT_RAD = 1 Modified two-stream

Ground snow surface albedo OPT_ALB = 3 Two-stream radiation scheme (W. Wang et al., 2022)

Precipitation partitioning OPT_SNF = 5 Wet bulb temperature (Y. H. Wang et al., 2019)

Lower boundary condition for soil temperature OPT_TBOT = 2 2-m air temperature climatology at 8 m

Snow/soil temperature time scheme OPT_STC = 1 Semi-implicit

Surface evaporation resistance OPT_RSF = 1 Sakaguchi and Zeng (2009)

Root profile OPT_ROOT = 1 Dynamic root (Niu et al., 2020)

Soil water retention model OPT_WATRET = 1 van Genuchten (1980)
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(D) as well as the matric potential (ψ) are parameterized using total soil moisture (θ = θliq + θice, where θliq (m 3 
m −3) and θice (m 3 m −3) are the liquid water and ice content, respectively):

𝑘𝑘 = (1 − 𝐹𝐹f rz)𝑘𝑘sat

(

𝜃𝜃

𝜃𝜃sat

)2𝑏𝑏+3

 (3)

𝐷𝐷 = (1 − 𝐹𝐹f rz)𝐷𝐷sat

(

𝜃𝜃

𝜃𝜃sat

)𝑏𝑏+2

 (4)

𝜓𝜓 = 𝜓𝜓sat

(

𝜃𝜃

𝜃𝜃sat

)−𝑏𝑏

 (5)

where ksat (m s −1) and Dsat (m 2 s −1) are saturated hydraulic conductivity and saturated hydraulic diffusivity, 
respectively, which are based soil texture. Ffrz is the fractional impermeable area. Matric potential is computed 
using Equation 5 for all the SHP schemes. Equations 3 and 4 indicate that the permeability is linearly reduced by 
a factor of Ffrz. Ffrz at a soil layer is parameterized as a function of θice at the layer:

𝐹𝐹f rz =

(

𝑒𝑒
−𝛼𝛼

(

1−
𝜃𝜃ice

𝜃𝜃sat

)

− 𝑒𝑒−𝛼𝛼

)

∕(1 − 𝑒𝑒−𝛼𝛼) (6)

where α is an adjustable, scale-dependent parameter (a = 3 in this study following Niu and Yang (2006), not calibrated). 
Equation 6 is modified from Niu and Yang (2006) to scale Ffrz to 1.0 when 𝐴𝐴 𝐴𝐴ice∕𝐴𝐴sat = 1.0 . It produces Ffrz < 𝐴𝐴 𝐴𝐴ice∕𝐴𝐴sat 
to account for snowmelt water flowing from impermeable to permeable areas, thus allowing for enhanced infiltration.

Option 2 (SHP2) adopts the scheme proposed by Koren et al.  (1999) and used in Noah-V3, which produces 
less permeable frozen soil. Soil hydraulic conductivity and hydraulic diffusivity under frozen conditions are 
given  by:

𝑘𝑘 = 𝑘𝑘sat

(

𝜃𝜃liq

𝜃𝜃sat

)2𝑏𝑏+3

 (7)

𝐷𝐷 = 𝐹𝐹perm ∗ 𝐷𝐷sat ∗

(

𝜃𝜃liq

𝜃𝜃sat

)𝑏𝑏+2

+
(

1 − 𝐹𝐹perm

)

∗ 𝐷𝐷sat ∗
[

min
(

𝜃𝜃liq, 0.05
)

∕𝜃𝜃sat
]𝑏𝑏+2 (8)

where the permeable fraction 𝐴𝐴 𝐴𝐴perm = 1∕
(

1+(500 ∗ 𝜃𝜃ice,max)
3
)

 , and θice,max is the maximum soil ice volume (m 3 
m −3) out of all layers.

Option 3 (SHP3) uses the formulation of Flerchinger and Saxton (1989) to parameterize frozen SHPs using liquid 
water only to estimate the soil water fluxes:

𝑘𝑘 = 𝑘𝑘sat

(

𝜃𝜃liq

𝜃𝜃sat

)2𝑏𝑏+3

 (9)

𝐷𝐷 = 𝐷𝐷sat

(

𝜃𝜃liq

𝜃𝜃sat

)𝑏𝑏+2

 (10)

Option 4 (SHP4) calculates hydraulic properties as a function of the ratio of liquid water content to effective 
soil porosity, which is defined as the residual soil porosity minus ice volume (Hansson et al., 2004; Zhao & 
Gray, 1997). In addition, the soil hydraulic conductivity accounts for reduction in infiltration by the ice blocking 
effects through an impedance factor, E (E = 6.0 in this study). This scheme was adopted by many LSMs including 
CLM4.5 (Swenson et al., 2012).

𝑘𝑘 = 10−𝐸𝐸𝐸𝐸ice𝑘𝑘sat

(

𝐸𝐸liq

𝐸𝐸sat − 𝐸𝐸ice

)2𝑏𝑏+3

 (11)

𝐷𝐷 = 10−𝐸𝐸𝐸𝐸ice𝐷𝐷sat

(

𝐸𝐸liq

𝐸𝐸sat − 𝐸𝐸ice

)𝑏𝑏+2

 (12)
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Option 1 (SHP1) generally produces higher permeability, than do the other three schemes. The SLW and SHP 
schemes are summarized in Table 3, and the model scenarios, which use combinations of the SLW and SHP 
schemes, are listed in Table 4.

2.2.5. RAPID River Routing Model

The Routing Application for Parallel computatIon of Discharge (RAPID, David et al., 2011) uses a matrix version 
of the Muskingum method to compute discharge in river networks made up of thousands of river reaches. RAPID 
has an extensive history of development and validation and has been widely used for research and operational 
applications (David et al., 2013; Sikder et al., 2019; Tavakoly et al., 2017, 2021). It has been operationally imple-
mented recently in the European Center for Medium-Range Weather Forecasting (ECMWF, https://geoglows.
ecmwf.int/) streamflow model. Moreover, the National Oceanic and Atmospheric Administration (NOAA) NWM 
(Maidment, 2017) uses RAPID as an alternative river routing model, and it is also used as a modeling component 
of the Streamflow Prediction tool (Snow et al., 2016). We use daily mean gridded lateral inflow, that is, surface 
runoff and groundwater discharge outputs from the last of the three 2014–2019 Noah-MP simulation loops, as the 
forcing to the RAPID model to predict daily discharge in the river network. The NHDPlus V2 data set is used to 
develop the geospatial framework for the entire MRB following Tavakoly et al. (2017). The performance of the 
model scenarios is assessed for the 2015–2019 period with model spin-up performed over 2014, following the 
convention of previous studies (e.g., Tavakoly et al., 2017, 2021). We used the same parameters for each RAPID 
simulation to eliminate the complicating effects of parameters on the streamflow results, because the main goal 
of this study is to compare streamflow routing results from different frozen soil schemes in Noah-MP.

2.3. Model Performance Evaluation

Evaluation of model performance is summarized with the Kling-Gupta Efficiency (KGE; Gupta et al., 2009). 
Given the mathematical limitations of the Nash-Sutcliffe Efficiency (NSE) (Gupta et al., 2009), the alternative 

metric KGE is widely used in modeling studies as an efficiency criterion 
for model performance calibration and validation (Hirpa et al., 2018; Imhoff 
et al., 2020; Nashwan et al., 2019; Tavakoly et al., 2017, 2021). KGE is based 
on a decomposition of NSE into correlation, variability bias, and mean bias 
components and reflects the Euclidean distance from an ideal state in scaled 
space with respect to these components.

KGEold = 1 −

√

(𝑟𝑟 − 1)2 + (𝛼𝛼 − 1)2 + (𝛽𝛽 − 1)2 (13)

Table 3 
Summary of Supercooled Liquid Water and Soil Hydraulic Propertie Schemes

Schemes Models/References Equations Underlying assumption

SLW 1 Noah-MP Equation 1 A general form of freezing point depression 
equation widely accepted by many modelsNiu and Yang (2006)

SLW 2 Noah V3 Equation 2 A variant of freezing point depression 
equation, producing more liquid water 
under subzero temperatures

Koren et al. (1999)

SHP 1 Noah-MP Equations 3–5 Assumes two fractional areas within a model 
grid, resulting in enhanced permeability 
compared to other schemes

Niu and Yang (2006)

SHP 2 Noah V3 Equations 7 and 8 Assumes freezing process is a drying process 
for k but considers two domains for D, 
resulting in low permeability

Koren et al. (1999)

SHP 3 Simultaneous Heat And Water Model (SHAW) Equations 9 and 10 Assumes freezing-thawing process is a 
drying-wetting process for both k and D, 
largely reducing permeability

Flerchinger and Saxton (1989)

SHP 4 Heat And Water Transport in frozen Soils (HAWTS) Equations 11 and 12 Assumes reduced porosity and a strong 
impeding effect due to the impedence 
fator, largely reducing permeability

Zhao and Gray (1997)

Table 4 
Model Scenarios

S1 SLW1 and SHP1 S5 SLW2 and SHP1

S2 SLW1 and SHP2 S6 SLW2 and SHP2

S3 SLW1 and SHP3 S7 SLW2 and SHP3

S4 SLW1 and SHP4 S8 SLW2 and SHP4

https://geoglows.ecmwf.int/
https://geoglows.ecmwf.int/
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where r is the correlation between observed and simulated flows, α represents error of flow variability, and β 
represents biases between observed and simulated flows. KGE spans from –∞ to 1, with 1 representing perfect 
agreement between observed and simulated values.

When the mean observed flow is predicted at every time step, KGE is nonzero (in contrast to NSE) (Hirpa 
et al., 2018; Knoben et al., 2019). Knoben et al. (2019) proposed rescaling KGE as follows:

KGEsi =
KGEold + 0.4142

√

2
 (14)

where si represents the ith scenario, for instance, the KGE value resulting from S5 is denoted as KGEs5. KGE 
scores above zero indicate that the model outperforms the long-term mean as a predictor, whereas negative scores 
indicate the opposite. We calculated KGE values using the daily streamflow simulations from 2015 to 2019. The 
difference in KGE between two scenarios can be greater than 1.0.

3. Results and Discussion
3.1. Noah-MP Model Validation

We evaluated the modeled daily SWE from Noah-MP against the observation-based UA SWE product from 2015 to 
2019 for the six HUC-2 river basins in the MRB (Figure 3). As the frozen soil scheme has very small effects on the 
snow simulations, here we show only the basin-averaged SWE results from Noah-MP with SLW1 and SHP1 driven 
by the IMERG precipitation (Figure 3). The modeled SWE reproduces the observed SWE averaged over most 
river basins with slight overestimations in the Missouri and Arkansas-White-Red Rivers. The model efficiency 
(NSE) is above 0.76 for all river basins except the Lower Mississippi River, where the model slightly underpredicts 
the observed SWE. Also, Noah-MP closely reproduces the length of the snow season in terms of the starting and 
ending dates of the snowy season over most grids. The modeled SWE is generally acceptable (though not perfect) 
for investigating the effects of different SLW and SHP schemes under frozen conditions on streamflow predictions.

We evaluated the annual number of days when the ice content in the first soil layer (10 cm) of a grid cell is greater 
than zero from the Noah-MP simulations against the SMAP L3 Freeze Thaw (FT) retrieval product, averaged 
daily from March 2015 to December 2019 over the MRB (Figure 4). Noah-MP predicted 191 maximum frozen 
days whereas SMAP L3 FT detected 210 days in the entire MRB. The average number of days predicted by 
Noah-MP as frozen over MRB is slightly greater than that of SMAP L3. For example, Noah-MP simulates 68 
average frozen days, about ∼18 days greater than what is detected by SMAP L3. However, it is important to note 
that the SMAP FT retrieval is based on radiometer observations at 6:00 a.m. descending and 6:00 p.m. ascending 
half-orbit passes and does not sample the entire diurnal cycle. Also, the SMAP FT retrieval does not distinguish 
individual contributions from soil, snow, vegetation, and surface water components within a grid cell, and rather 
it represents the FT signal of the bulk landscape (Y. Kim et al., 2019). In the northeastern part of MRB, SMAP 
L3 shows a smaller number of frozen days because of the more vegetation cover (which intercepts solar radia-
tion and remains at an unfrozen state during daytime) in this region. The detection of FT is also degraded over 
complex terrain, during seasonal FT transitions (Podest et al., 2014), presence of thick snow, surface water, and 
dense vegetation cover (Kerr et al., 2012; O’Neill et al., 2021; Rowlandson et al., 2018; Wigneron et al., 2017). 
The correlation between SMAP L3 FT frozen days and Noah-MP simulated frozen days is 0.58. Except the north-
eastern part of MRB that are covered by dense vegetation, Noah-MP modeled and the SMAP FT derived frozen 
days show an overall agreement. The SMAP FT is the only frozen soil information currently available at the 
continental scale for model validation. This rough comparison represents a first attempt that may inspire future 
studies on how to further benefit from the SMAP observations.

3.2. Model Scenarios Evaluation

This section compares modeled streamflow simulations at 52 USGS gauges in the MRB to the observed discharge 
from USGS NWIS data set at daily scale. We use KGE to evaluate the performance of different model scenarios. 
The mean KGE for the eight model scenarios increases from 0.32 to 0.46 when they are driven by IMERG, and 
S5 performs the best with KGES5 = 0.46 (Figure 5). For the NLDAS scenarios, the mean KGE values range 
from 0.18 to 0.29, and S5 performs the best with KGES5 = 0.29. The lower mean KGE values resulting from the 
NLDAS scenarios relative to the IMERG scenarios is due only to the two different precipitation products that 
were used to drive Noah-MP.



Water Resources Research

AGNIHOTRI ET AL.

10.1029/2022WR033075

11 of 25

We show the model improvement using the percent KGE gain of S5 relative to other scenarios (Figure 6). Positive 
values indicate a skill gain with S5 relative to the other scenarios, while negative values indicate that a skill loss 
with S5. S5 performs better at most of the gauges and worse at fewer gauges than do other scenarios (except S1, 
which shows limited better performance). Model S5 driven by NLDAS precipitation (NLDAS S5) shows a greater 
KGE gain compared to the other NLDAS scenarios by 5%–12% than that driven by the IMERG precipitation 
(IMERG S5 compared to other IMERG scenarios) (Table 5). Of all scenarios, regardless of precipitation product 
used, S7 performs the worst, and S5 and S1, with higher permeability, perform the best. To summarize, imple-
menting SLW1 or SLW2 does not have an apparent effect on model performance, whereas sensitivity to different 
SHP schemes has a material effect on model performance. The results obtained here are consistent with those by 
Niu and Yang (2006), where the combination of SHP1 and SLW1 (or SLW2) improve monthly runoff simulations 
due to consideration of fractional permeable areas with higher permeability.

Model improvement for the months from January to June averaged over years from 2015 to 2019 for daily stream-
flow simulations is summarized as percent KGE gain (Table 6). We select this period as the snowmelt runoff, 
infiltration, and groundwater discharge are more strongly affected by the freezing/thawing states of frozen soil, 

Figure 3. Comparison of the predicted daily snow water equivalent (SWE) (unit mm; black lines) by Noah-MP (S1) and 
the observation-based University of Arizona SWE product (red dots) from 2015 to 2019 averaged over the HUC-2 basins 
(Figure 1): (a) the Ohio (H05), (b) Tennessee (H06), (c) Upper Mississippi (H07), (d) Lower Mississippi (H08), (e) Missouri 
(H10), (f) Arkansas-White-Red (H11). Model evaluation metrics r, RMSE and Nash-Sutcliffe Efficiency are shown on the top 
of each panel.
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further helping the analyses of the model's efficacy to simulate snowmelt-dominated discharge at the gauges. 
Again, S5 and S1 produce the best model performance, while S7 produces the worst. Differences is model perfor-
mance are more apparent for the January to June period than for the whole water year. These results support the 
claim that SHP schemes producing higher permeability yield improved model performance. Consistent with 
the annual analysis, NLDAS-driven models are more sensitive to the changes in SHP schemes for the seasonal 
analysis as compared to the IMERG-driven models. IMERG S5 improves the performance over S7 by 64% 

Figure 4. Annual number of days from (a) Soil Moisture Active Passive L3 retrieval of Freeze-Thaw (FT) states and (b) Noah-MP simulations (days when the top 
10 cm soil was frozen) averaged for March 2015–December 2019 over the Mississippi River Basin.

Figure 5. Kling-Gupta efficiency (KGE) resulting from IMERG and NLDAS forced S1 to S8 across the 52 United States Geological Survey gauges in Mississippi 
River Basin. Boxes are delimited by 25 and 75 percentiles; whiskers show 10th and 90th percentile values, and red line in the box is the median. IMERG S5 performs 
the best and is selected as the benchmark to measure the percent KGE gain relative to other scenarios.
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while improvement obtained with NLDAS S5 is 113%. This may suggest that model structure (parameterization 
schemes) is more critical for model performance when the forcing data (e.g., the NLDAS precipitation) are more 
uncertain (Figure 6; Table 6).

3.3. Model Scenario Evaluation by Region

The spatial distribution of KGE values from S5 shows satisfactory performance for most gauges for both 
IMERG-forced (Figure 7a) and NLDAS-forced (Figure 7b) simulations. For instance, about 40 of 52 gauges show 
KGE values above 0.3 for IMERG S5, while 34 of 52 gauges have KGE values above 0.3 for NLDAS S5. Figure 7c 
reveals that 32 out of the 52 gauges show improved KGE values for IMERG S5 as compared to NLDAS S5, with 
a magnitude of improvement of up to 3.1 in KGE. By contrast, the maximum KGE for gauges where NLDAS S5 
outperforms IMERG S5 is only 0.46. KGE gain for IMERG S5 relative to NLDAS S5 is greater for the Missouri 

Figure 6. Model improvement (defined by percent KGE gain) of S5 relative to other scenarios driven by IMERG (left panel) and NLDAS (right panel) for all the 52 
gauges in the Mississippi River Basin. The boxes are delimited by 25 and 75 percentiles; the whiskers show 10th and 90th percentile values, and the blue line in the box 
is the median of model improvement. The Y-axis is limited to enhance the visibility.

Table 5 
Mean, Minimum, and Maximum Improvement in KGE (%) Estimated From S5 Compared to Other IMERG and NLDAS Scenarios in Mississippi River Basin for the 
Whole Water Year From 2015 to 2019

IMERG S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8 Minimum Maximum

Mean (%) 0 20 26 21 40 45 32 −31 1,243

NLDAS S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8 Minimum Maximum

Mean (%) 0 25 31 30 49 57 40 −65 2,427
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region (H10) than for the Upper Mississippi Region (H07). Overall, IMERG-forced model simulations produce 
higher KGE values than those forced by NLDAS, and we mainly consider IMERG scenarios for further analysis.

Figure 8a shows KGE values resulting from IMERG S5, and Figures 8b–8h summarizes the KGE gain by IMERG 
S5 relative to other IMERG scenarios. IMERG S5 clearly outperforms other IMERG-forced model scenarios at 
more than 75% of the 52 gauges in the MRB. KGE improvements using IMERG S5 in the Missouri River (H10), 
which has a greater proportion of soil ice content (see Figure 9), are greater than in all other HUC-2 regions (see 
Figure 1). This suggests that a higher-permeability frozen soil scheme, such as S5, may promote more accurate 
simulations of discharge in frozen soil dominated drainage areas. For other HUC-2 regions with less soil ice 
content (Figure 9), the improvement in KGE is less pronounced.

To further explore the geographic effects, we divide the MRB into East and West regions. The East region 
consists of the Ohio (H05), Tennessee (H06), Upper Mississippi (H07), and Lower Mississippi (H08) basins 
of MRB, while the West region consists of the Missouri (H10) and Arkansas-White-Red (H11) basins. Model 
improvement, as measured by percent KGE gain averaged over the 52 gauges, for IMERG S5 and NLDAS S5 
compared to other corresponding scenarios in the East and West regions is presented in Table 7. IMERG S5 
shows improvements in the averaged KGE (relative to the worst S7) by up to 203% for the West region but less 
than 7% in the East region. Also, NLDAS S5 shows improvement in the averaged KGE (relative to the worst, S7 
for the east region and S2 for the west) by up to 142% for the West region but less than 8% in the East region. 
Tavakoly et al. (2017) reported lower KGE values at gauges in the West region from RAPID driven by the VIC 
(RAPID/VIC) modeled runoff. In this study, IMERG S5 shows a KGE gain at gauges in this region (Tables 7 
and 8), suggesting that other models would potentially improve their performance in the West regions, where 
more soil ice is present (Figure 9), when using a higher-permeability SHP scheme.

3.4. Effects on Hydrograph

This section compares daily discharge simulations with the observed discharges from 2015 to 2019. We used the 
four gauges representative of the major basins in the MRB (Figure 1) to evaluate the effects of the eight model 
scenarios on the modeled hydrographs. The gauges representing Ohio and Tennessee regions are not considered 
due to missing values. These selected gauges represent different HUC-2 regions and reflect a variety of drainage 
areas (Table 1 and Figure 2) and observed discharges ranging from 1,010 m 3/s to 23,735 m 3/s. IMERG- and 
NLDAS-driven S5 and S2 are selected for hydrograph analysis since these scenarios include the formulation 
of SHP following the higher-permeability parameterization of Niu and Yang (2006) and the lower-permeability 
parameterization of Koren et al. (1999), respectively.

Figure 10 shows the modeled discharge at two gauges: the Missouri River at Hermann, Missouri and the Red 
River at Spring Bank, Arkansas, which represent the Missouri (H10) and Arkansas-White-Red (H11) regions, 
respectively. The modeled streamflow at the Spring Bank station agrees well with the observed discharge (KGE 
>0.84) with both IMERG and NLDAS precipitation products and both scenarios (S5 and S2). Replacing precip-
itation products or altering SHP and SLW schemes has negligible impacts on the simulated hydrograph at the 
Spring Bank station (Figure 10a). However,  there are substantial differences in the modeled streamflow for the 
Missouri region. IMERG S5 shows improved performance relative to IMERG S2 with KGE increasing from 
0.59 to 0.69 due to the different SHP and SLW schemes. Precipitation has an even greater impact with KGE 
increasing from 0.53 (NLDAS S5) to 0.69 (IMERG S5). IMERG S5 follows the observed streamflow more 
closely than the other model scenarios, and IMERG S2 and NLDAS S2 significantly overestimate streamflow 
and appear to predict peak flow earlier than the gauge data. The dramatic contrasts between scenarios at the 

Table 6 
Mean, Minimum, and Maximum Improvement in KGE (%) Estimated From S5 Compared to Other IMERG and NLDAS Scenarios in Mississippi River Basin From 
January to June for 2015–2019

IMERG S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8 Minimum Maximum

Mean (%) 0 29 39 29 55 64 47 −37 6,441

NLDAS S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8 Minimum Maximum

Mean (%) 0 49 61 56 94 113 77 −40 958
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Hermann station suggest that, where the basin is dominated by frozen soil 
(the Missouri region, H10, Figure 9), the scenario with higher soil permea-
bility (S5) more accurately captures the phase of the hydrograph than the one 
with lower soil permeability (S2). However, these differences are minor in 
the Spring Bank station, which is likely due to negligible soil ice present in 
the basin (Arkansas-White-Red Region, Figure 9).

The model performance is improved for the Vicksburg station (Figure 11a) 
when IMERG precipitation is used (compared to NLDAS). The scenario 
differences have minimal impact on the hydrograph at this downstream 
station with the largest upstream area, which is most likely due to attenuation 
of the frozen soil effects over the upstream catchments. The hydrograph at 
the Keokuk station in Iowa demonstrates that NLDAS S5 performs better 
than other model scenarios, improving KGE from 0.65 (NLDAS S2) to 0.70 
(Figure 11). IMERG-forced model scenarios tend to overestimate the stream-
flow at this station for the years 2016 and 2017, while they are able to capture 
peak flow more accurately than NLDAS S5 in the year 2019, suggesting 
potential further improvements through combinations of different precipita-
tion products.

4. Discussion
In this study, we focus on the effects of frozen soil permeability on stream-
flow predictions at river-basin scales with all the simulations sharing the 
same soil water retention scheme under freezing conditions, that is, Equa-
tion 5. The modeled results suggest a scheme that represents a weaker effect 
of soil ice on infiltration improves streamflow predictions at most gauges with 
frozen soil dominated upstream basins. This is also reflected by increases 
in the modeled ratio of baseflow (or groundwater discharge) to total runoff 
(Figure 12). IMERG S5 and NLDAS S5, with higher permeability, increase 
the baseflow ratio by 10.95% and 13.66% compared to IMERG S7 and 
NLDAS S7, respectively. The increase in baseflow ratio is most pronounced 
over basins dominated by frozen soil (Figures 12e and 12f). Increases in infil-
tration during the melting season can propagate into later seasons to increase 
baseflow ratio through increases in soil moisture and hydraulic conductivity. 
This study, however, does not investigate the effects of (a) soil water retention 
characteristics under freezing conditions or (b) preferential flow on stream-
flow predictions (although it does assume the presence of macropores in the 
parameterizations given by Equations 3 and 4, which are used in both S1 
and  S5).

Current understanding of the soil water retention characteristics and SLW 
content under freezing conditions is still unclear across scales. In a modeling 
study at pedon scale (Hansson et al., 2004), the soil water retention scheme 
that treats freezing as drying successfully reproduced the measured evolution 
of soil water profiles. Due to rapid reduction in soil water potential in  the 
topsoil caused by freezing from the surface, liquid water flows upward across 
the freezing front. Recent lab experiments suggested even stronger suctions 
during thawing than during freezing (i.e., hysteresis) due mainly to the super-
cooled pore water and possibly to changes in pore structure during freezing–
thawing processes (Ren & Vanapalli, 2019). These lab-scale experiments and 
modeling studies suggest that the meltwater is prone to being held rather 
than draining. This appears to conflict with field experiments on infiltrabil-
ity of undisturbed soil (Demand et al., 2019; Stadler et al., 1996, 2000) and 
streamflow observations at catchment scales (Lindström et al., 2002; Shanley 

Figure 7. Spatial distribution of KGE at all Mississippi River Basin gauges 
for (a) IMERG S5, (b) NLDAS S5, and (c) KGE difference between IMERG 
S5 and NLDAS S5. Red colored dots indicate performance deterioration, while 
the green colored dots indicate improvement using the IMERG precipitation. 
The number of Green/Red dots is detailed on ©.
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Figure 8. Spatial distribution of IMERG S5 KGE at all Mississippi River Basin gauges (a) and KGE improvement of 
IMERG S5 over other IMERG scenarios (b–h). Red colored dots indicate performance deterioration, and green colored dots 
indicate improvement of IMERG S5. The numbers of Green/Red dots are reported on the maps.
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Figure 9. Modeled monthly mean soil ice content (m 3/m 3) in Mississippi River Basin from October to March averaged over 2015–2019. Red dots show United States 
Geological Survey gauges where streamflow analysis was performed.

Table 7 
Differences in KGE (%) Between IMERG S5 and Other IMERG Scenarios Averaged Over Gauges in the West (H10 and H11) and East (H05, H06, H07, and H08) 
Regions for the Whole Water Year From 2015 to 2019

IMERG

WEST S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8

Mean (%) 0 58 78 55 178 203 105

EAST S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8

Mean (%) 0 3 5 5 4 7 6

NLDAS

WEST S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8

Mean (%) 3 142 136 139 121 120 128

EAST S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8

Mean (%) 0 4 6 6 5 8 7
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& Chalmers, 1999) as well as large-scale model studies (Niu & Yang, 2006). The current study suggests that 
higher permeability of frozen soils with weaker suction of melt water can improve streamflow predictions at 
basin scales.

The current study does not consider the effects of soil structural change caused by ice expansion during the 
freezing-thawing cycles, which may alter the pore structure and promote preferential flows through connected 
macropores. When parameterizing the hydraulic conductivity (Equation 3), a model grid is divided into fractional 
impermeable and permeable areas, considering presence of macropores following Niu and Yang (2006), but not 
actually enhancing the Ksat values, which are based on soil texture and are around 10 −6 m/s for most soil types. 
However, in model simulations considering macropore effects with TOPMODEL-based runoff schemes (J. Chen 
& Kumar, 2001; Stieglitz et al., 1997), Ksat is enhanced by 10 1–10 3 times to account for the presence of macrop-
ores in topsoil (Beven & Germann, 1982). In a recent modeling using a more physically based dual-permeability 

Table 8 
Difference in KGE (%) Between IMERG S5 and Other IMERG Scenarios Averaged Over Gauges in the West (H10 and H11) and East (H05, H06, H07, and H08) 
Regions for Months From January to June of the 2015–2019 Period

IMERG

WEST S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8

Mean (%) 0 78 109 68 235 280 140

EAST S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8

Mean (%) 0 5 10 9 7 12 11

NLDAS

WEST S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8

Mean (%) 1 289 248 273 174 171 209

EAST S5–S1 S5–S2 S5–S3 S5–S4 S5–S6 S5–S7 S5–S8

Mean (%) 0 9 11 11 10 15 14

Figure 10. Daily hydrographs of observed and simulated streamflow for (a) the Red River at Spring Bank, Arkansas and (b) the Missouri river at Hermann, Missouri 
stations, where IMERG and NLDAS S5 and S2 are evaluated over the 2015–2019 period.
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model (embedded in HydroGeoSphere), Ksat for the macropore domain is calibrated at ∼10 −3  m/s to match 
observed infiltration data under frozen conditions (Mohammed et al., 2021).

Advancements in coupling frozen soil models with 3-dimensional (3D) variably saturated flow models 
that solve the 3D Richards' equation (J. Chen et al., 2020; Niu et al., 2014; Schilling et al., 2019; Thornton 
et  al.,  2022) may help improve the understanding of the impacts of soil freeze-thaw processes on infiltra-
tion and flow mechanisms. In these modeling studies, key model parameters (e.g., Ksat) were calibrated to 
improve streamflow simulations, resulting in greater Ksat values on the order of 10 −5 to 10 −3 m/s. For instance, 
Niu et  al.  (2014) calibrated the vertical Ksat to 2  ×  10 −4  m/s and lateral Ksat to 2  ×  10 −3  m/s in the 3D, 
CATHY/Noah-MP coupled model at 30- and 90-m resolutions in a sub-catchment of the Sleepers River, 
Vermont. The calibration, however, confused the uncertainties in model structure (or understanding) of key 
mechanisms controlling flow through porous media (containing soil particles, organic matter, ice, and frac-
tures, etc.) with model parameter uncertainties. To improve the understanding of freeze-thaw processes, model 
selection techniques should be used to evaluate model structures (or competing hypotheses) while considering 
model parameter uncertainties (Ye et al., 2008; X. Zhang et al., 2014). Dual permeability flow models that 
represent slow flow in matrix and rapid flow through macropores both containing ice (e.g., Larsbo et al., 2019; 
Mohammed et  al.,  2021) are promising for testing competing hypotheses through alternative model struc-
tures (representations of macropore volume fraction, mineral and ice adsorptivity, pore connectivity, and ice 
blockage, etc.) over a wide range of key parameters with the Bayesian inference criterion (or other objective 
metrics). In addition, these models provide an opportunity to understand the conflicting phenomena in infil-
tration and discharge across scales from specific types of soil at lab scales to undisturbed soils at basin scales 
through the linkage of macropore volume fraction to pre-frozen air-filled pores, ice content, organic matter 
(Milly et  al.,  2014), and topographic index (J. Kim & Mohanty,  2017) or through machine-learning aided 
parameterizations.

Figure 11. Daily hydrographs of observed and simulated streamflow for (a) the Mississippi River at Vicksburg, Mississippi and (b) the Mississippi River at Keokuk, 
Iowa, where IMERG and NLDAS S5 and S2 are evaluated over the 2015–2019 period.
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5. Conclusion
In this study, we evaluated the impacts of different representations of frozen soil within the Noah-MP LSM on 
river discharge simulations. Specifically, we investigated the effects of eight combinations of two SLW schemes 
and four SHP schemes that featured different hydraulic conductivity parameterizations but the same treatment of 
matric potential. The gridded hourly surface runoff and groundwater discharge from Noah-MP were transferred 
to the RAPID river routing model to simulate discharge at 52 USGS gauge locations in the MRB on a daily time 
step for the 2015–2019 period. We used two hourly precipitation products, NLDAS-2 and GPM IMERG-Final, 
and other hourly near-surface atmospheric forcing data of NLDAS-2 to drive Noah-MP.

The results demonstrate that parameterization schemes that represent higher permeability in frozen soil 
produce more accurate streamflow simulations at most gauges in the MRB (39–41 gauges out of 52) relative 

Figure 12. Modeled baseflow ratio of (a) IMERG S5, (b) NLDAS S5, (c) IMERG S7, (d) NLDAS S7, (e) difference between IMERG S5 and IMERG S7, and (f) 
difference between NLDAS S5 and NLDAS S7 averaged from 2015–2019.
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to lower-permeability schemes, for example, the SHAW model (Flerchinger & Saxton,  1989; Hansson 
et al., 2004). While the effects of SLW on streamflow simulations appear to be negligible, simulations appear to 
be substantially sensitive to SHP schemes. The impacts of frozen soil effects are particularly evident for frozen 
soil dominated regions. The effects on downstream reaches (with larger upstream drainage areas) appear to be 
weaker, which may be due to attenuation of the frozen soil effects. Schemes with higher permeability resulted 
in mean values of KGE improvement over the entire MRB of 20%–57% throughout a water year and 29%–113% 
for the spring and early summer relative to lower permeability schemes. The number of gauges, where KGE 
values increased was greater than the number where they decreased. Models forced with IMERG-Final tend 
to outperform NLDAS driven model scenarios at most of the gauges in the MRB. The results are consistent 
for the seasonal analysis from January to June when IMERG-driven simulations with increased permeability 
perform considerably better. In addition, gauges in the western region of the MRB demonstrate considerable 
improvement in KGE compared to regions in the east, which may be due to the greater amount of soil ice pres-
ent in the western regions.

This continental-scale study suggests that, irrespective of the precipitation product used to drive the 
Noah-MP-RAPID model, a model with higher frozen soil permeability (Niu & Yang, 2006) produces more accu-
rate streamflow simulations in frozen-ground dominated drainage areas. The Niu and Yang (2006) model repre-
sents a dual domain model with enhanced permeability, but the effects of frozen soil on infiltration and runoff 
are highly parameterized. Further research investigating the impacts of soil freeze-thaw processes on infiltration 
and flow mechanisms should rely on physically based models, for example, the dual permeability flow model 
to represent preferential flow, which should be testable from lab-scale infiltration experiments to basin-scale 
streamflow simulations.

Data Availability Statement
The data used in this study are freely available online: NLDAS-2 data (http://www.emc.ncep.noaa.gov/mmb/
nldas/); the UA SWE and snow depth data (https://nsidc.org/data/nsidc-0719/versions/1); NASA SMAP FT 
product (https://nsidc.org/data/spl3ftp/versions/3); GPM IMERG-Final product (https://disc.gsfc.nasa.gov/data-
sets/GPM_3IMERGHH_06/summary); USGS streamflow data (http://nwis.waterdata.usgs.gov/nwis/dvstat/?re-
ferred_module=sw). Both the Noah-MP code used in this study and the USGS gauge IDs and data have been 
uploaded to a repository that may be accessed by other researchers (https://github.com/mfarmani95/Noah_MP).
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